Masterat informatica biomedicala

Master de Informatica Biomedicala (Biomedical Informatics)

Durata programului de master:

4 semestre

Acreditare

Masterul de cercetare Biomedical Informatics este acreditat ARACIS.

Obiectivele programului

Cercetarea in biologie si practica medicinei se impletesc astazi tot mai mult cu gestiunea de informatii. Calculatorul ofera metode noi biologilor si medicilor pentru a gasi, memora, si ordona informatii, pentru a avea acces online atat la registre publice sau la arhive documentale ce contin documente bibliografice, cat si la date memorate in fisiere personale sau pentru a publica documente. Enorme baze de date sunt folosite pentru stocarea, arhivarea si analiza secventelor DNA; tehnici care produc reprezentari vizuale ale unor parti ale corpului uman, a tesuturilor sau organelor interne acestuia sunt astazi disponibile pentru stabilirea diagnosticului in anumite boli; sisteme informatice necesare in practica cabinetului sau a clinicii sunt capabile sa identifice, sa comunice si sa memoreze in mod persistent elemente cheie ale dosarul medical al pacientilor; sisteme de management al procedurilor administrativ-contabile pot integra operatiile de facturare si alte servicii necesare organizarii unui cabinet sau a unei clinici; in fine sisteme integrate pe larga scara teritoriala ajuta cercetarii epidemiologice si prevenirii bolilor.

Cu o asemenea raspandire si cu un asemenea rol al tehnologiilor informatice si de telecomunicatii in cercetare si in practica medicala si cu esecul tot mai evident al tehnicilor traditionale de a face fata cresterii rapide a dependentei de informatii in gestionarea nevoilor personalului medical sau de cercetare, a devenit clara afirmarea unui nou domeniu de frontiera, esential pentru dezvoltarea sociala, Informatica Biomedicala (Biomedical Informatics). Ea este studiata atat in universitatile care pregatesc cadre medicale si alti profesionisti din domeniul sanatatii, cat si in cele care pregatesc ingineri cu o buna pregatire informatica.

Informatica Biomedicala este un camp de activitate multidisciplinar care se ocupa de studierea si aplicarea conceptelor din stiinta calculatoarelor, din tehnologiile informatiei si ale comunicatiilor (ICT) in practica si cercetarea din biologie si asistenta medicale. Acest camp se concentreaza pe achizitia, reprezentarea, organizarea, depozitarea, extragerea si folosirea informatiilor si cunostiintelor biomedicale pentru a imbunatati asistenta medicala a pacientilor, educatia medicala si cercetarea in stiintele medicale.
Printre zonele in care se aplica informatica biomedicala se numara:

  • tratamentul clinic: proiectarea sistemelor informatice clinice si a dosarelor clinice electronice
  • biologia: biologia sistemelor, biologie structurala si virusologie;
  • sanatatea publica: proiectarea sistemelor cu rolul de a promova si proteja sanatatea comunitatilor, imbunatatirea sistemelor de sanatate publica, guvernarea sistemului sanitar si aplicarea tehnologiilor informatice;
  • cercetarea translationala: integrarea cunoastintelor din biologie si a celor clinice si promovarea stiintei multidisciplinare pentru aplicarea lor cat mai rapid in practica.

Programul de master de Informatica Biomedicala (MBMI) din cadrul FILS UPB este un program complementar cu o durata de 24 luni care isi propune pregatirea studentilor in informatica aplicata in biologie si medicina furnizandu-le o baza teoretica solida si competente practice, care vor fi de folos atat in sanatate cat si in industrie.
Punctul central al acestui program de master se afla in interfata dintre cercetarea stiintifica fundamentala si cea aplicata, cu un accent puternic pe interactiunea dintre cunoastere, inovare si dezvoltare, pe o parte, si aplicatii practice pe cealalta parte.

Bioinformatica, imagistica, informatica clinica, si informatica sanatatii publice sunt astazi domeniile informaticii biomedicale. Bioinformatica se concentreaza pe metodele de calcul pentru a achizitiona, memora, analiza informatii biologice si pentru a modela compozitia sau structura biomoleculelor. Imagistica se concentreaza pe metodele de extragere, analiza, imbunatatire a informatiilor continute in imaginile clinice in scopul furnizarii unui diagnostic. Informatica clinica se concentreaza pe metode relevante pentru asistenta medicala. Informatica sanatatii publice se concentreaza pe metode relevante pentru sisteme de sanatate publica luate in intregimea lor. Toate aceste domenii sunt reprezentate in programul MBMI.

Programul MBMI trateaza de asemenea si e-sanatatea, adica aplicarea ICT in asistenta medicala pentru a imbunatati accesul, eficienta, eficacitatea si calitatea proceselor clinice si de afaceri folosite de organizatii clinice, personal medical, pacienti si furnizori pentru imbunatatirea starii medicale a pacientilor. Aplicatiile de baza ale e-sanatatii includ atat sistemele de dosare clinice electronice, de management al infomatiei in organizatii clinice, de informatica medicala pentru consumatori, de management al datelor de cercetare, sistemele de tratament al pacientului, sistemele de gestiune a imaginilor, sistemele farmaceutice si de dispensare de servicii medicale, sistemele de extragere a informatilor si bibliotecile digitale, precum si si instrumentele si tehnicile folosite in bioinformatica pentru achizitionarea, stocarea si folosirea datelor genomice, metabolice si proteomice.

Programul este proiectat in principal pentru a satisface nevoile de pregatire profesionala a doua tipuri de studenti: 1. Studentii avand profesia in domeniul sanatatii si care doresc o pregatire suplimentara in tehnologiile infomatiei si in managementul organizatiilor sanitarie, si 2. cei a caror profesie este in afara domeniului sanatatii, eventual din domeniul informaticii, si care doresc o specializare in tehnologia informaticii medicale.

Competenţe generale şi competenţe specifice

Competente generale:

Programul de master in Informatica Biomedicala furnizeaza studentilor pregatire in doua domenii fundamentale: stiintele naturii si ingineria. Curriculumul acopera mai multe subdomenii ale acestor domenii fundamentale: biologie, medicina, calculatoare, matematica, management de organizatii si, cu accent deosebit, tehnologia informatiei. Ca informaticieni biomedicali, absolventii se vor evidentia de informaticieni prin cunostiintele lor din domeniul medical si intelegerea rolului si insemnatatii speciale ale informaticii in lumea complexa a biologiei si asistentei medicale.
Studentilor provenind din domenii variate masterul le pune la dispozitie o baza solida de cunostinte tehnice in informatica medicala, sanatate si medicina, stiinta calculatoarelor si metodologii de cercetare astfel incat acestia sa poata ocupa pozitii care necesita o intelegere profunda atat a tehnologiei informatiei cat si a activitatilor din sistemul de sanatate.
Scopul curriculumului este de a prepara absolventi capabili, specializati in informatica biomedicala si care sa isi asume locuri de munca pe masura atat in industrie, cat si in sanatate sau mediul academic. Aceasta calificare va reflecta cunoasterea cuprinzatoare pe care studentii o vor fi dobandit asupra problemelor din domeniul informaticii medicale si se va constitui intr-o expertiza unica, extrem de utila astazi pe piata muncii. Absolventii acestui program vor avea cunostiintele, competentele si calificarile necesare pentru un sector din piata muncii cu o crestere rapida in urmatorii ani.

Completarea acestui program va da posibilitatea unei game variate de cariere cum ar fi cea de manager de informatii sau aplicatii sanitare, informatician clinic, analist, cercetator saui instructor in diverse medii medicale cum ar fi: spitale, laboratoare, companii farmaceutice, agentii guvernamentale, agentii de asigurari medicale, in toate aceste organizatii fiind absolut necesare tehnologiile informatice moderne. De asemenea, pentru informaticianul biomedical calificat, cu o adecvata pregatire academica si cu o importanta experienta in informatica, se deschid posibilitatile unei cariere specializate cum ar fi: chief information officer (CIO), director de proiect de cercetare, manager al sistemelor informatice spitalicesti sau de laborator.

Abilitati:

Selectarea, sintetizarea si evaluarea teoriilor, modelelor si metodelor din stiinta informatiei joaca un rol important in activitatea informaticianului biomedical. Acesta va fi mai curand un expert in analiza , modelare, proiectare, implementare si evaluare de sisteme informationale, decat in dezvoltarea produselor software avansate aflate in spatele acestor sisteme.
Studentii vor trebui sa aiba o cunoastere concreta atat a starii de sanatate sau maladie a corpului omenesc cat si a organizarii sistemelor de asistenta medicala. Ei vor trebui sa poata aplica:

  • algoritmi bioinformatici si metode statistice pentru problemele de cercetare;
  • cunoasterea biologiei – in special a aspectelor genetice, histologice sau ale afectiunilor aparatelor vitale
  • la abordarea problemelor de biomedicina si biologie computationala;
  • analiza statistica la problemele de biomedicina;
  • principii ale informaticii biomedicale la probleme in diverse domenii ale sanatatii si biomedicinei;
  • principii ale stiintei calculatoarelor la probleme de sanatate si biomedicina;
  • principii ale comportamentului organizational si abilitati de management la probleme de informatica biomediala;
  • cunostinte in proiectarea, dezvoltarea, selectarea si gestiunea sistemelor de calcul la aplicatia lor in biomedicina;
  • metode de cercetare statistica cantitativa sau calitativa la evaluarea proiectelor de cercetare.

Grupuri ţintă

Candidatii la programul de master in Informatica Biomedicala trebuie sa aiba o cunoastere buna a limbii engleze.
Pentru a aplica la MBMI este necesara completarea ciclului de licenta la o institutie acreditata din Romania sau din alta tara, cu specializarea in orice domeniu al stiintelor exacte (matematica, fizica, chimie sau informatica), medicina, biologie, inginerie sau stiinte economice.
In plus candidatii trebuie sa detina abilitati de baza in cel putin un limbaj de programare, concepte de baze de date, internet si analiza matematica elementara. Candidatii care nu detin abilitati in informatica sunt indrumati sa urmeze un curs introductiv la UPB-FILS si anume: Programming Languages sau unul echivalent. Acest curs furnizeaza o vedere de ansamblu asupra conceptelor tehnice si de baza in calculatoare, structuri de date si tehnologii de comunicare, necesare pentru intelegerae tehnicilor, proceselor si aplicatiilor in curriculumul informaticii medicale.

Descrierea disciplinelor din planul de învăţământ

Fundamentals of Bioinformatics

The subject will introduce the students to the domain of BioInformatics, to access efficient tools for managing and interpreting the ever increasing quantities of genome data and for making it available to the scientific community. Upon completion of the course, the students will be able to access data from well known genome databases, to represent and to process it, to make alignments, to compare different genomes and to build phylogenetic trees based on the given data.

Cellular and Molecular Biology

The subject presents the basics of molecular biology and describes its connection to complex human disease. At completion of the subject, the student will be able to identify and explain the major systems and processes and of human physiology at the cell/molecular level, as well as the current molecular techniques: electrophoresys, PCR, sequencing, cloning.

Biostatistics

Perform classical statistical analyses and correctly interpret the results
Correctly apply biostatistical methods to biological and genomics analyses
Proficiently use biostatistical methods in biological analyses

Databases for Clinical Information Systems

The aim of this course is to introduce fundamentals of database analysis, design, and implementation. The course covers the whole development cycle, from business analysis and up to technical per¬spec¬tives and implementation details with an emphasis on practical aspects of business process analysis and the accompanying database design and development. The course also explores issues of data representation in health-care systems, including patient and provider identification, audit trails, authentication, and reconciliation. The underlying design of repositories for electronic health records (EHRs) and computerized provider order entry (CPOE) systems is also discussed.

Students are required to work with a local client organization in understanding their business requirements, developing a detailed set of requirements to support business processes, and designing and implementing a web based database application to support their day- to-day business operations and decision making. Students will acquire hands-on-experience with a state-of-the-art database management system such as Oracle or Microsoft SQLServer, and web-based development tools.

Healthcare Systems Analysis and Design

The design and implementation of an informatics application in the healthcare environment is an incredibly complex project. This course provides a basic methodology for understanding and defining the scope of the project, planning and running it. This course covers systems development methodologies; the systems development life cycle, and the concepts, tools and techniques currently used in the analysis of healthcare information systems and the design of new systems and applications. The Unified Modeling Language (UML) is currently the industry standard for communicating many of object‐oriented development artifacts. In this course UML is the vehicle for learning how a health care application is developed. This course provides skills suitable to a business analyst, software analyst, or software architect. The student should be able to meet the following specific objectives:

perform systems and software analysis and design
have skills to partition a system in logical and physical views according to relevant aspects and then integrate them in a unique artifact
be able to compare and choose intelligently from among methods, tools, and techniques of systems and software analysis and design
contribute as a team member in analysis and design projects
to understand how to specify analysis and design in terms of several conceptual modeling tools as UML’s diagrams.

Biomedical Signal Acquisition and Processing

Lectures will introduce the students to the domain of Biomedical Signals, nature, types, quantitative or qualitative measurements and analysis with modern digital signal processing methods.

Competencies:

  • Proficiently use major DSP technologies and genomics tools and databases
  • Develop tools for genomic analysis using high-throughput technologies.

Clinical Informatics

Clinical Informatics is the scientific discipline that seeks to enhance human health by implementing novel information technology, computer science and knowledge management methodologies to prevent disease, deliver more efficient and safer patient care, increase the effectiveness of translational research, and improve biomedical knowledge access. “Clinical informaticians transform health care by analyzing, designing, implementing, and evaluating information and communication systems that enhance individual and population health outcomes, improve patient care, and strengthen the clinician-patient relationship. A key focus of the center’s activities is the Electronic Health Record (EHR). Healthcare is an intensely data-driven discipline. New national and international initiatives aim to define and implement a secure, patient-centric, longitudinal electronic health record that will store an individual’s past and present health status, care received and plan of care, and that can be appropriately shared to improve health outcomes and enhance patient safety. Equally important as a focus is how the EHR can support the development of evidence-based medicine through translational, clinical and outcomes-based research, while ensuring the security and privacy of individual patient information. A large proportion of clinical information is contained within clinical documents, such as radiology reports, surgical pathology reports, operative reports, discharge summaries and clinic notes. Much of this document-based data is represented as unstructured narrative text with little, if any, standardization of the language used to represent important information such as diagnosis, therapy or test results. The data contained within these documents is therefore difficult to integrate into clinical or research databases that need to support efficient standards-based retrieval. Focusing on the information-system life cycle, this course provides students with essential knowledge and skills to plan the specification, development, deployment, and evaluation of clinical systems in a wide variety of contexts, taking account the special needs and characteristics of clinical environments. An in-depth study for the basic concepts surrounding clinical information systems, with emphasis on electronic health records – terminology and standards, clinical configuration, user interface design, computerized physician order entry, clinical decision support, and clinical reporting. The course then focuses on the practical application of these concepts, including implementation, clinical workflow, privacy and security, certification, medical device integration, and community health information exchange. Sample information systems include Bar Coding, Clinical Decision Support, Computerized Provider Order Entry, Consumer Health, Continuity of Care Record, Electronic Health Records, Electronic Prescribing, Health Information Exchange, Master Patient Index, Mobile, Personal Health Records, Telehealth.

Medical Image Processing

The course aims at introducing the use of image processing and analysis techniques as a tool for improving human medical diagnosis. Upon completion of the course, the students will be able to choose among various available image processing tools those which have the most chances of succeeding for a given medical image processing application and to combine them into a full processing chain.

Bioinformatics (Microarrays, Proteomics etc.)

A DNA microarray is a multiplex technology used in molecular biology and in medicine. It consists of an arrayed series of thousands of microscopic spots of DNA oligonucleotides, each containing picomoles of a specific DNA sequence. This can be a short section of a gene or other DNA element that are used as probes to hybridize a cDNA or cRNA sample under high-stringency conditions. Probe-target hybridization is usually detected and quantified by fluorescence-based detection of fluorophore-labeled targets to determine relative abundance of nucleic acid sequences in the target. Proteomics is the analysis of the entire protein complement expressed by a genome, or by a cell or tissue type. This subject introduces concepts and tools involved in proteomics.

On completion of the module, the students should be able to:

  • Understand how DNA microarrays can be used to measure changes in expression levels,
  • Detect single nucleotide polymorphisms, in genotyping or in resequencing mutant genomes.
  • Understand the experimental design and the methods of analyzing the data.
  • Show theoretical knowledge of aminoacids, proteins, enzymes
  • Possess a basic knowledge regarding protein extraction, electrophoresis, protein and peptide analysis by mass spectrometer, protein identification, and application of proteomics.

Bioinformatics

Biomedical Sensors and Instrumentation

The lectures introduces the student to the domain of electronics applied to biomedical engineering, insisting on sensors and laboratory instrumentation. At the completion of this lecture, the students will show understanding and practical skills regarding measurement methods, sensors, laboratory instrumentation, spectrophotometry, electrophoresis.

Brain-Computer Interface

Key Standards in Health Information Systems

The purpose of this course is to learn the data, information, and knowledge standards critical to the successful implementation of local, regional, and national health-related information systems. Target competencies are to identify the appropriate level of HITSP standards for an informatics problem, and select the appropriate standard within that level; create use cases and an organizational process to define an interoperability standard for a specific healthcare/regional situation; participate in a national standards-creation process; be able to understand the key concepts and use HL7 and ISO/IEEE 11073 medical device standards. Standard clinical terminologies including SNOMED, Clinical Terms Version 3 (Read Codes), UMLS, ICD-9-CM, ICD-10-CM, and ICD-10-PCS, CPT/HCPCS, medical linguistics, medical vocabulary standards, natural language processing and the role of healthcare vocabularies and clinical terminologies in the electronic health record.

At laboratory the students will use the clinical terminolgies classifications, define use cases and an organizational process to define an interoperability standard in a similar way as for HITSP standards for a specific healthcare/regional situation, built applications based on HL7 standards and ISO/IEEE 11073 standards for medical device communications.

Contact

Andrei Vasilateanu: andraevs@gmail.com

Link-uri rapide

Urmăreşte-ne